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ABSTRACT 

The theory of compressible, inviscid fluid flow was developed in 

order  to establish a basis to evaluate flow fields. 

o rder ,  non-linear, partial differential characterist ics of the gas dynamic 

equations were solved using a co-ordinate transformation to a charac- 

ter is t ic  surface and a numerical finite difference technique. 

The hyperbolic, second 
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SUMMARY 

The compressible flow equations a r e  derived in detail for the 

inviscid flow of a homogeneous fluid. The various assumptions utilized 

in the derivations a r e  listed below, except where they involve a specific 

circumstance of the derivation. In the latter case,  the assumption(s) 

will be designated at the point where they a r e  utilized. 

1. Homogeneous Fluid 

2. Inviscid Fluid 

3. Uniform Flow State of Approach 

4. No External Heat Flux 

5 .  Equilibrium Gas States of Single Phase 

6 .  No External Forces Other Than Those 
Inherent in the Flow 

Where it has been applicable, the final equations have been 

reduced from the three independent variables to two and then to one 

independent variable so as to show the influence of the co-ordinate 

parameters within the flow. 

The compressible flow relations have been transformed to 

characteristic surfaces in a form suitable for solution by numerical 

procedures. Several problems may be solved by use of the three 

independent variable method of characteristics; however, the author 

has attempted to retain the generality of the equations while presenting 

the solution of an ideal flow field to illustrate the adaptability of this 

method. 
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The characteristic relations are derived, the geometrical 

relationships are resolved and the velocity equations are solved for 

an ideal flow field utilizing the three independent variable method of 

characteristics. 
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INTRODUCTION 
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Several areas of application have been solved by the method of 

characterist ics;  however, relatively little has been published on three 

independent variable solutions. 

by various authors and although these a r e  limited in scope, they comprise 

an important step in the solution of compressible flow problems. Coburn 

and Dolph I ,  Thornhill , and Holt 

to the solution of three independent variable problems. 

F e r r i  (several  published papers and specifically the contributions 

contained in volume VI of the Princeton Series entitled General Theory 

of High Speed Aerodynamics) have shown certain problem solutions by 

the three independent variable methods. 

Axisymmetric studies have been made 

2 
have established methods pertaining 

Tsung4 and 

The author has attempted to combine these solutions with the 

basic equations to outline the procedures necessary to solve several  

a r eas  of flow field problems. 

attacked by this method where other methods of l e s s  scope a r e  inadequate. 

Some of these areas a r e  nozzle flow fields of clustered je ts ,  arbitrari ly 

oriented re-entry body flow fields, asymmetric flow fields about various 

body shapes, unsteady nozzle flow fields, unsteady flow about bodies, 

and many other a reas  which a re  too numerous to mention. 

Several a r eas  of interest  may be 

The subsequent discussion outlines an approach to a solution of 

one of these problem areas .  

steps to the solution of some of the other problem a reas  with certain modi- 

fications of the following analysis. 

The reader may conceivably see the basic 
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DERIVATION OF THE METHOD O F  CHARACTERISTICS IN THREE 
INDEPENDENT VARIABLES FOR THE INVISCID FLOW 

O F  A HOMOGENEOUS FLUID 

Gene r a1 Equations: 

Consider a control volume fixed in space with a space-fixed surface 

boundary, u. The control volume may be of arbi t rary shape, but it must 

be a definite shape, i. e., invariant. (Figure 1). 

Figure 1: Region R of an arbi t rary,  but definite shape with 

surface,  u , and outward drawn normal, g. 
+ Let d u  be a surface element of u with outward drawn normal, n . 

-.c -c 
Let qn be the velocity component along the normal n which may be defined 

as , 

-P 

qn = ucos  (n,x) t vcos (n,y) + wcos  (n,z) 

where u,  v, and w are the velocity components in the x, y, and z directions 

respectively. The angles (n, x), (n, y), and (n, z) a r e  the angles between 

2 



the normal and Cartesian axes measured in a counter-clockwise direction. 

The mass flux into the spatial region, R, must be equal to the mass 

flux out of spatial region, R, plus that mass which remains within the 

region. The mass flux per unit volume is: 

where p - density 

- velocity normal to surface 
'n 

Since the surface is invariant with time, we may write the continuity 

equation as: 

Euler 's  equations of motion may be derived by use of Newton's law 

noting that we have momentum conservation which implies three scalar 

equations i n  particle mechanics. 

Let the force per unit mass be 3 and consider only inviscid flow, 

then the body force in the x-direction may be defined as: 

p Fx dx dy dz 

R 

and similarly defined for the y and z directions. The hydrostatic force 

per unit area,  p in the x-direction may be defined as: 

pcos  (n,x) d a  

U 

3 

(3) 

(4) 
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with corresponding equations in the y and z directions. 

Newton’s law states that the sum of all forces must be equal to 

the rate  of change in momentum within R. 

volume integral of pu must be included within this change and is indicated 

in the x-direction by 

The rate  of change of the 

d 
dt 111; u dx dy dz 

and the transport  of momentum through the surface, (r , is ,  

Thus, Euler’s equations become (for the x-direction) 

If we consider that there  a re  no outside body forces,  o r  that they a re  

of such a magnitude that they may be considered negligible, then we may 

write equation (7) as 

d 
dt I I I R p u  dxdydz t puq, t pcos (n,x) ] dr  = 0 

The corresponding y and z directions yield: 

4 



d 
dt  
- 

A third condition of the flow i s  the energy equation which equates 

the net effect of body and pressure forces to the rate  of change of kinetic 

energy and internal energy and the energy flux resulting from some out- 

side effect such as heat radiation or conduction. 

The total ra te  of change of kinetic and internal energy within R is 

- 
where u is the internal 

u )  dxdydz 

energy of the fluid element. 

The total external energy flux, i. e . ,  that through the surface, cr , 

may be written as 

If k is  the constant of heat flux, then the total heat flux through (b 

is: 

where T is the fluid temperature. 

Since we are assuming that the heat flux into region R is positive, 
a T  

the sense of (13) is necessarilypositive. This implies that an  is a 

negative quantity i f  heat is added to region R. 

5 



Utilizing the pressure term of the momentum equations ( 8 ,  9, 

and l o ) ,  we may write the energy equation as: 

1 -sS,.[ cos (n,x) t - a T  cos (n,y) t - a T  cos (n, z) dw 
a Y  a Z  

The utilization of integral relations for the derivation of the gas 

dynamic equations allows the treatment of compression shocks or  

other finite discontinuities in the fluid s t ream in the regions where 

the differential equations break down. Secondly, the integral relations 

a r e  invariant during a rotation of the co-ordinate system and in Galilei 

transformations. 

The transition from the integral relations to the differential 

relations requires that the functions be smooth. If we transform the 

surface integrals to volume integrals by means of the Gauss integral 

theorem which states that for every function, G, 

Gucos  (n,x) + G v c o s  (n,y) t Gwcos  (n,e) dcr 1 

= sllR ( G a  dxdydz 

6 



If G = p , then applying Gauss's theorem, 15, to the continuity equation, 

2, resul ts  in  the following. 

A s  R becomes small, in  the limit,the functions under the integral 

sign vary lees and less with R, so that 

(17) - a p  t V*(p<) = 0 a t  

By a similar transformation equations 8, 9, and 10 become 

P - =  D a  'VP 
D t  

The energy equation, 14, may be transformed to yield 

7 



SPECIAL CASES 

General Discussion: 

At this point in the derivation the equations a re  general except 

f o r  the assumptions listed on page ii 

to one which is inviscid and uniform. 

made about the flow which will reduce the complexity of the general 

equations and give rise to a solution. 

1. 

which primarily restrict the flow 

Several other assumptions may be 

These may be listed as follows. 

No heat flux across  the boundaries of the flow. This says that 

v& T) = 0, i. e. that there exists an adiabatic flow field. 

2. The fluid is isoenergetic. 

where the stagnation enthalpy of the flow field remains constant, o r  In 

equational form. 

This further restricts the problem to one 

3. 

state related by 

The fluid is an ideal fluid. This assumption achieves an equation of 

P = pRuT 

where Ru is the universal gas constant and gives the user several relation- 

ships between sound speed, velocity, pressure,  enthalpy, entropy, density, 

and temperature which may be used to further simplify the general corn- 

pres  sible flow relations. 
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4. 

heat constant, Cp, and the isovolumic specific heat constant, Cv,remain 

constant in the flow field. This also states that gamma, the ratio of Cp 

to Cv, remains constant. 

The fluid is calorically perfect. This states that the isobaric specific 

Steady Isoenergetic Flow 

The utilization of assumption 2 above results in an important 

relation in gas dynamics entitled Bjerknes' theorem which may be obtained 

a s  follows. 

Enthalpy, h, may be defined as 

h ii t P / p  

The stagnation enthalpy is that enthalpy which a fluid would possess 

if the fluid were brought to res t  reversibly and adiabatically and it is 

define d by 

- 
hB = h t 

Using equations 22 and 23 equation 19 becomes 

a a t  [ p ( $ q z  t E)]+ V[ p<hl] =V 'VRT) 

or 

9 



Since the fluid may be rotational we define this as the curl of c," 
+ 

v x q ,  where 

4 

v x q  = 2 w x i  t 2 w  j t 2 w  k 
Y Z 

utilizing Stokes theorem** we arrive at (along the normal direction) 

Utilizing the Helmholtz' f i rs t  vortex theorem and defining as 

then within an inviscid fluid with no body forces,  the material derivative 

of I? may be expressed as 

* See For Instance Reference 5 .  

** Refer to any text of hydrodynamics or vector analysis, for instance 
Reference 6. 
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or 

where C is the boundary curve of the surface (r . 
Combining the first and second laws of thermodynamics, the 

foll3wing may be written: 

* Tds - dh - P  

equation (30) becomes, having noted that d h  = 0 since enthalpy is a 

property and not a path function, 

- dT = - $Tds = -6fc.;i;dr ds = -ll ( V x T = ) d ( r  dt 
ds 

C 

this may be written as  Bjerknes' theorem:' which is of the form 

Transforming Euler 's  equations and using the theorem of Bjerknes , 

we obtain for steady isoenergetic flow, 

which for steady flow reduces to Crocco's equation. 

*See Appendix A 
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Steady Inviscid Flow 

For  steady flow equations 17, 18, and 24a a re  a s  follows: 

+ 
p a  t v p  = 0 

Dt (36)  

(37)  

At this point i t  is necessary to require that the approaching fluid i e  

uniform and further, assuming that the heat f l u x  into the boundary B is 

zero or negligible, the energy equation may be neglected since the 

implication of a steady inviscid flow with no heat f l u x  i s  that the flow 

i s  isoenergetic. Therefore, 

noting that 

where - G = 0 
a t  

then equation (36)  becomes 

'3 + - q x c u r l q  t VP = 0 

12 



Using equation (31 )  and combining equation ( 3 8 )  with (40) gives 

Crocco's equation 

Let us examine equation (41) to determine the properties of the 

isoenergetic, steady, inviscid flow. 

cur l  

a gradient of entropy which is non-zero impliesthat the fluid is rotational 

and conversely. 

If the flow is anisentropic, then the 

cannot vanish and the flow field cannot be irrotational. Therefore, 

If grad s is zero, then two conditions may exist for the left-hand 

Either the velocity vector and the vorticity vector side of equation (41). 

a r e  parallel which is the case in  Beltrami flow, o r  the curl  q 

which results in irrotational, potential flow. 

--c 
is zero 

--f 

Performing the scalar product of the velocity vector, q , and 

equation (41) resul ts  in  

+ .  q grad s = 0 

Examining this equation leads to the obvious conclusion that either 

3 

q o r  grad s is zero,  which a r e  trivial cases ,  o r  that the gradient of 

the entropy i s  in a direction normal to the velocity vector. 

streamlines traced by the vector, q , for steady, isoenergetic, and 

inviscid flow exhibit no change of entropy. 

Further,  the 

--f 

Therefore, the flow must 

1 3  



be isentropic along streamlines provided that no discontinuities in the 

flow exist ( e . g . ,  shock waves). If the flow field upstream is  everywhere 

uniform, then we may conclude that the entire flow field is isentropic 

provided that there a r e  no discontinuities in the fluid stream. 

Since the flow along streamlines is isentropic, we may utilize 

the definition of the sound speed along the streamline. 

6 

where A is the local speed of sound. 

If we restate the fundamental equations in car tes ias  form, 

a U  1 a p  
t - -  a U  a U  

U- ax + VG + w g ,  p a x  = O  

aw 1 a p  aw a w  
ax  aY P az  

+ w z + - -  = o  U-  t v- 

14 
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and write the scalar product of the entropy gradient and the velocity vector 

along a streamline, 

a s  a s  
a Z  a Y  

t w- = o  a s  t v-  U -  ax (46) 

and combine the definition of sound speed and E1 Ler's equations by first 

multiplying them by -u, -v, and -w in x, y, and z directions respectively, 

(471 

Combining these with continuity equation 

we get, 

- u w ( ~ t ~ ) - V w ( 2 I  ax  
a 2  + aY a w p o  (49) 

15 



which is the gas dynamic equation f o r  steady, inviscid, isoenergetic flow of 

a homogeneous fluid along a streamline. 

Defining the vorticity vector by i ts  components 6 , q , and 5 

as 

Since the steady, inviscid flow of the fluid i s  isoenergetic, the 

entropy may be related to the vorticity vector components by the 

following : 

a s  
a Z  

UT - v f  = -T- 

16 
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Unsteady Inviscid Flow 

The fundamental 

9 + 0 .  ( p T )  
a t  

Assuming that 

p, p ,  and T,  

4- v p  = 

relations may be restated a s  follows: 

= o  

i t  is possible to express the speed of sound a s  a function of 

It is possible to obtain a solution to the energy equation provided that the 

thermal conductivity, Ir , is identically zero. 

differentiated with respect to time to yield: 

Equation (31) may be 

which is equation (20) for non-isoenergetic flow. Thus, equation (53) 

implies that in  an isentropic unsteady process,  the stagnation enthalpy is 

a function of the local pressure variation and the density of the flow field. 

In addition, the gradients of enthalpy and entropy may be seen to be directly 

related with the pressure variation in the flow; therefore, any solution of an 

unsteady nature must contain gradients of entropy and enthalpy and local- 

variation of pressure-density to achieve any t rue  representation of the flow 

field. 

17 



CHARACTERISTIC RELATIONS 

General Derivation of the Characteristic Relations 
n- Dimensional Euclidean Space: 

Assume that there exists a system of equations quasi-linear in  

their first derivatives consisting of k independent variables: 

uk u1, Ut, u3, . . . .. . , 
In this section of this report ,  ui is the velocity component in the i th 

direction, and xj refers to the co-ordinate direction. 

summation convention will be used and it will be understood that all i 

will vary from one to k and all j from one to n. 

The general tensor 

The general second order equation which i s  quasi-linear in i t s  

f i r s t  derivatives represents the inner product of the a. 

f i r s t  derivative of the u n-tuple, 

tensor with the 
1j 

Since each ith equation, that is each b n-tuple, is a sca la r ,  they may be 

summed over all i to give a final sum, B, where B and aij a re  functions 

only of ui and not of - . a ui 
a xJ 

n- 1 
The system of equations contains (k) coefficients, aij , and 

n k  derivatives of ui which establishes the mathematical problem that must 

be solved. That i s ,  given (n - 1) derivatives of uj a t  a point (x' , x2 , 2 , , . . xn), 

calculate the remaining k derivatives from the system of equations. The 

(n - 1)k derivatives may be thought of as being in some hyperspace, S ,  with 

18 



the remaining k derivatives normal to that space, S. 

exists only if it can be shown that the tensor, ai, is of such a character 

that the remaining k derivatives a r e  normal to S. If this system does 

exist, it will  be designated as  a characteristic space and the system of 

equations a re  hyperbolic in nature (that i s ,  the space i s  considered as 

positive definite). 

The hyperspace, S, 

Clearly i f  these equations a r e  linearly dependent, then there exists 

such a characteristic space. 

invariant a i  and summing over all i ,  

Thus multiplying each ith equation by an 

Define: 

and 

u i / j  = aui/axJ 

Then equation (55) becomes 

i If equations (54) a r e  linearly dependent, then the tensors A J 

set  al, a', a3, . . . . . , a ) be parallel to the characteristic space, S. 

characteristic space may be found by first  determining some arbitrary 

tensor, dsr which i s  normal to S, that i s ,  that tensor, d'r, for which the 

inner product of dS, and Aij i s  zero; 

wil l  (for some 

k The 
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where bi j  i s  the Kronecker delta. The solution may be made by solving 

for each of its components in n-dimensional space. 

have a finite set  of solutions (a', a', a3, . . . . . , ak) i f  and only if  the 

denominator determinant is zero (that is, only the indeterminacies of 

the derivatives a r e  of interest, since these produce the special characteristic 

space), then the solution for dsr is  unique and of the form of equation (56). 

Since these equations 

Particular Solution for Three-Dimensional, Rotational, Isoenergetic, 
Inviscid, Steady Flow of a Homogeneous Gas 

In this space (n=3) and (k=5) the co-ordinate system i s  defined 

a s  follows: 

a) Let x' lie along the direction of the velocity vector and 

b) x! be normal to x' and 

c) 2 to be normal to both x' and 2. 

The five independent Variables a re  u l ,  u2, u3 ,  p, and p. The 

five equations a re  equations (17) and (18) plus the following: 

9' - At*  = 0 
ax a 

The determinant appears as: 

Pdl Pd2 pd3 0 

PU' dl 0 0 dl 

0 PUl  d2 0 d2 

0 0 PU' d3 d3 

0 0 0 dl 

20 
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For  a non-trivial solution, the density, p, and the velocity, u1, cannot 

be identically equal to zero; therefore, two solutions a r e  possible as 

follows: 

(d1)3 = 0 

Since dl must be real  for the solution to be hyperbolic in nature, dl 

must  be identically zero. 

the streamlines of the flow, regardless of the velocity, are characteristics 

of the flow; however, this does not lead to the general solution of the 

problem. 

This leads to the interesting conclusion that 

The second possible solution is: 

The second solution shows that if (u1 / A  < l ) ,  there a r e  no real  values for 

the dl ' 8 ,  that is ,  there exists no rea l  characteristic space. 

there i s  no real  solution unless both dz and d3 a r e  identically zero and 

even then, the solution for dl is indeterminate. 

is of no interest in this report, this solution will not be explored further. 

If (u1 / A  > I ) ,  the d's a r e  rea l  and the solutions speed range is defined, 

that of supersonics. 

If (u1 / A  = l ) ,  

Since the transonic region 

Equation (57) is, upon close inspection, the equation of a real  

cone of revolution about the x1 axis; therefore, every line normal to the 
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d’s also forms a cone of revolution about the x1 axis each of which 

possesses a slope of its genearatrices defined by the Mach angle, p, as: 

A 
U1 

p = arcsin - 

and 
7 

dx2 1 

t a n p  = f J z  (2) - 1 =dx’ 

The vorticity vector has components: 

(5 9) 

Transforming the relationships to the plane of the velocity vector and bi- 

char ac ter i s tic * yields : 

Substitute equations (64) and (59) into equation (57) using the definition of d1, 

*See Figure 4, page 37. 
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Combining equations (59), (62), and (64) yields: 

In order  to achieve a second relation, i t  i s  necessary to explore: 

However, along 

d d  - = o  
dx' 

the 

- - 

bi-characteristic, 

Combining equations (60), (61), and (66) yields: 

The streamline co-ordinates a re  related to the Cartesian system 

by an angle, 6 , which is defined as the angle between the diametral plane 

of the characteristic cone passing through the bi-characteristic and the 

diametral plane parallel to the z-axis. Figure 2 shows the relationship 

between the polar spherical co-ordinates and the Cartesian system. 

If the velocity is expressed in spherical polar co-ordinates 

(q, 6, 4 )  for the streamline solution, the u vector becomes: 

- du2 

9 
= cos 6 d 8 t sin 6 sin 6 d$ 

23 



FIGURE 2 

CHARACTERISTIC, VELOCITY, AND CARTESIAN CO-ORDINATE RELATIONS II 
24 



du3_ = -sin 6 de t cos 6 sin 0 d +  
9 

Also, the x1 co-ordinate may (for convenience) be transformed to the 

bi-characteristic line, E , and redefining, 

x1 = a 

Then, noting that 

Equations (65) and (67) become: 

de 4J de .L 9 tan pcos 6 - 7 tan p sin 6 sin 0 - t tan’ p sin 6 cos p - 
9 de de dc dn 

sin‘ p d+ t S 1 3  sin p 
cos6sin0 - = o  - 

cos p d n -  9 

and 

sin 6 de sin 0 cos 6 2 de 
tan p cos 6 dn - -  l d q  t -- - 

q dn cos p dc c o s  t.L ds 

The characteristic equations for this particular solution a re  in a 

form suitable for numerical analysis. 

in this report. 

This will be explored further later 
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Particular Solution for Two-Dimensiona1,Irrotational. Inviscid, 
~- ~~~ 

Unsteadv Flow of a Homogeneous Gas 

The following derivation w i l l  utilize the preceding development 

and assumptions, except that i t  w i l l  be necessary to further restrict  the 

fluid to one which satisfies the following equation of state 

P = p R , T  

that is, an ideal fluid. 

Consider equations 17, 18, and 24a. 

!!E t v.(& = 0 
a t  

D q  t V P  = 0 pDt 

The density, p ,  m a y  be considered to be a single valued function 

of P along some curve C. 

sible fluid will apply to p as follows. 

Therefore, Kelvin's theorem for an incompres- 

dl? = d P  - dt - $ f q t d r  = f -  - P = - f T d s  

It is feasible to describe homentropic flow at this point. Hornentropic* 

implies that there exists spatial invariability of the entropy in a cloud of 

*See Modern Developments in Fluid Dynamics, High Speed Flow. Ed. 
L. Howarth. Oxford, 1953. p.3 
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particles engaged in  isentropic flow. 

homentropic cloud vorticity can neither be created,  nor annihilated within 

such a flow field; however, the surroundings of this cloud need not be 

is entropic. 

Further,  that within this 

Therefore, requiring the fluid to be homentropic and assuming an 

irrotational state of approach of the flow validates the use of Kelvin's theorem 

in equation (70), although Kelvin's theorem was originally derived for an 

incompressible fluid. 

may be written as follows. 

Further,  with these assumptions, Euler 's  equations 

- a t  av  + lp: $ dp ] = 0 

Representing the velocity vector by a potential field: 
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and if the fluid i s  calorically ideal, the integral relations become: 

-dp = l (A' - A 1 ' )  
Y - 1  

The integration over definite limits exases  the integral sign and the 

derivatives of + are t 

-+tt = = + v+ty -k + -- A' a p  
a t 2  P at 
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Combining equation 2 with equation 77 eliminates the density from the 

continuity equation and yields upon rearranging 

Equation 78 represents the g a s  dynamic equation for unsteady, inviscid 

flow of an ideal homogeneous fluid in three dimensions. The linearized 

form of the above equation for parallel flow of velocity u may be shown 

to be: 

where Moo = Mach number of the parallel flow and 

t '  = A,t 

00 = represents the free s t ream conditions 

This equation, 7 9 ,  is the usual point of beginning the solution of oscillatory 

processes and has been transformed to a wave equation of the form 

where is the stagnation value of sonic speed. 

Reducing the problem from 4 variables in equation 78 to three 

variables requires only that z = 0 and w = 0. Equation 78 then becomes: 

which is  equation 78  in two dimensions with three independent variables. 

2 9  



Equation 81 becomes upon rearranging and noting that an ideal 

fluid has been assumed** 

Equation 82 is similar to the steady supersonic inviscid flow gas 

dynamic equation 49. 

tions, a characteristic solution of t 

Since there exists this similarity between the equa- 

= f(x,y) may possibly exist. 

Assume equation 82 has characteristic surfaces 

t = f(X.Yb 

then they must be defined by 

(A2 - u2)(fxx) i- (A2 - ? ) ( f n )  - 1 + 2vfY + 2ufX-:  2uvf f = 0 (84) 
X Y  

where f 

y defined as 

and f 
X Y 

are the partial derivatives of f(x,y) with respect to x and 

**See Appendix B. 
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The direction cosines of the normal to the characteristic surfaces 

are proportional to f x D  f and -1. 
Y D  

A* (f= t fyv) = (dX t vfy - 1)’ 

or  parametrically as,  

1 f -=Y f X = 
cos 6 sin 6 ucos 6 t v s i n 6  t A 

where 6 is  defined as per Figure 3. 

Since the unsteady flow process yields a hyperbolic equation for 

every speed range, the characteristic surfaces a r e  rea l  for all velocities. 

Consider a co-ordinate system involving X, y and t a5 in Figure 3. 

at time 

components u and v, after some time dt, the particle, wil l  move to another 

point P1 (x 1, yl ) , where 

If 

the fluid particle is located at P(x0, yo)  with velocity q and 

XI = X O  t udt 
(88 )  

Y 1  = Yo + Ydt 

Thus, the fluid particle has propagated itself after some disturbance from 

p (x,,, yo) to Pl (x1, y1 ) which l ies within a circle defined by i ts  center 

xo t udt, y o  t vdt and i t s  radius Adt.* 

The characteristic conoid (that i s  this circle) is defined by: 

(X - X O  - udt)‘ t (y - yo - vdt)’ = (Adt)’ 

*Note: Simic waves propagate themselves at sonic speed; therefore, after 
some time, dt, and with velocity, A, the particle will have moved 
through a distance Adt. 
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Figure 3 

Co-ordinate System for the Mach Conoid in 
Unsteady, Inviscid, Two-Dimensional Flow 

32 



The characteristic cone from P(xo,y,) may be defined as, 

(X - 3)' 1- (Y - YO)' -+ (t - t o ) '  (u2 i- 2 - A') - 2u(t  - to) (X - xg) 

- 2 v ( t  - t o )  (y - yo) = 0 

- 
The bi-characteristic line, PQ , has 

U 
t dx 

V 
4- 

PQ 
- 

The line QR normal 

cos 6 

sin 6 

- 
to line OQ in the plane t = constant locates 

- - 
line FQ with respect to  the Mach cone. If line OQ is inclined at an 

angle 6 to the x axis, then 

(2)) = t a n 6  
Q 

- 
Since PQ is  the bi-characteristic curve of the characterist ic cone 

- 
which emanates f rom P(xo, yo), then along PQ, the bi-characteristic curve, 

since PQ has been defined in the characterist ic plane, equation 87 applies; 
- 

a - a therefore, i f  - indicates the variation along PQ and - the variation 

along QR, the following may be obtained from equations 78  and 86. 
a a  an - 
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aA cos 6 - ( A + v s i n 6 ) ( k - E ) - v c o s 6 ( Z +  ”). - 2A 
aa an an Y -  1 a a  

a A  
(v t A sin 6) - - - 0  

2 
Y - 1  an t -  

and 

s i n d ( K - k )  au - c o s t j ( z t  e)t--= 2 aA o 
an  an y - 1  an 

which upon rearranging produce 

(2 - E.) t -(cos 2 6 -  aA t s i n 6 f i )  = o 
Y - 1  aa  an 

Equations 94 and 95 a re  the velocity equations to be used in the 

analysis of unsteady flow fields of all speed regimes. The solution of 

these by a numerical technique is quite similar to the one now utilized 

in the solution of the steady flow equations. 

Solutions section wil l  be devoted to  this development. 

A portion of the Numerical 

At this point, the solutions of the three dimensional gas dynamic 

equations by characteristic techniques a r e  complete. Modifications may 

be made to each to alleviate some of the stronger assumptions necessary 

to the final forms presented in this section. 

used in the solution of these equations for a physical application a re  

discussed in the following section. 

The numerical techniques 
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NUMERICAL SOLUTION 

The velocity equations in the preceding section a r e  in general not 

amenable to solution by separation of variables, superposition or any of 

the other well-defined techniques of solving partial differential equations. 

These equations a re  hyperbolic non-linear, second order partial differential 

equations and either a ser ies  solution o r  a finite difference technique must 

be utilized. The author has chosen the use of finite differences to achieve 

a solution since this adapts quite well to high speed digital computer 

techniques. 

2 Thornhill has established a method to accomplish this numerical 

procedure which may be summarized as  follows. 

Noting that there exist characteristic conoids in Euclidean three- 

space which a r e  generated by bi-characteristic curves that lie on the 

characteristic cones, the solution of the flow field may be made by 

numerical integration along a hexahedral network of characteristic surfaces. 

These surfaces may (in sufficiently small  units) be approximated by plane 

sections which a r e  normal to the characteristic cones at the bi-characteristics. 

Thus, the already determined physical and dynamic values at the known 

three points (that is, those -at PI , P, , and Ps) may be used, coupled with 

the six relations (three physical and three dynamic) of the plane sections, to 

calculate the velocity and space co-ordinates of the fourth point, p 4 .  

the geometrical significance of the problem allows systematic numerical 

Thus, 
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integration along a grid of hexahedral surfaces to completely 

given hyperbolic flow field of three independent variables. 

General Solution of the Super sonic , Isoenergetic, Irrotationa 
Inviscid Flow of a Homoeeneous G a s  

describe a 

, - 

Steady Flow in Three Dimensions: 

The numerical integration of the hexahedral network must be 

related to the intersection of the characteristic conoids with the characteristic 

cones and their subsequent intersection to determine the location of the 

space co-ordinates of the fourth point, Pq. 

of the three Mach cones while Figure 5 shows the relationship between the 

characteristic cones, the characteristic conoids, and the bi-characteristic 

curves. 

Figure 4 shows the intersection 

Figures 4 and 6 show the characteristic tetrahedron which i9 the 

primary calculating network that wi l l  be used for the solution of the flow field. 

Consider three non-collinear, arbitrari ly located points in three- 

space (see Figure 6) defined by their three-space co-ordinates (xj, y,, z,) 

and their dynamic co-ordinates (qj, 0, , +j) where the velocity is expressed 

in spherical polar notation and j takes on values of 1,  2 ,  and 3 depending 

upon the point under consideration. 

the co-ordinate system and .the characteristic cone. 

Figure 2 shows the relationship of 

The characteristic conoids (general characteristic surfaces) inter sect 

the characteristic cones at the bi-characteristics. These general charac- 

terist ic surfaces may, in a sufficiently small unit, be approximated by 
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Bi - char acter istic 

Character i s  tic Sur fac Bi - char acter i s tic 
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Surface with Plane 123 
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Figure 4 

Typical Hexahedral Network 
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Gener a1 Characteristic Surfaces r\ through Arbitrary Curve 

I 
Characteristic Curve in 

Space Cone 

Figure 5 

Characteristic Surfaces, Conoids, and Curves 
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plane sections, hereafter referred to as the tangent planes to the charac- 

terist ic cone. Thus, the tangent planes contain the bi-characteristics and 

a r e  everywhere inclined at  an angle f p to the velocity vector. 

The outward drawn normals to the tangent planes a re  inclined at 

an angle f (u/2 t p) to the velocity vector. Expressing the outward drawn 

normals to the planes, nj, in terms of their direction cosines, nij , where 

i r e fe r s  to the co-ordinate direction and j to the number of the plane under 

consideration as follows: 

--t 

j = 1 defines plane PI , P2,  and P4 

j = 2 defines plane Pz , P, , and P4 

j = 3 defines plane P, , PI, and P4 
+ 

The inner product of the outward drawn normal, nj , with any line in the 

jth tangent plane may be expressed as: 

+ + 

n '  j Lj = cos (1T/2) = 0 

+ 
The lines, L can be defined by their direction cosines, lij, 

j '  
+ 

Choosing the lines, L , to be the base lines of the tetrahedron (line 1-2,  

line 2-3, and line 3 - l ) ,  1 . .  may be defined as  follows: 

j 

1J 

and similarly for 1 and 1 until all base lines have been determined. 
2j 3j 
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The inner product may now be rewritten, 

n.. P i j  = 0 (98) 'J 

A second relation can be obtained by performing the inner product of the 

,normal, nij , with the velocity vector, 

--t 

where the velocity vector, q , has  been normalized. A third and final 

relation comes from a property of the direction cosines. 

1 nij2 = 0 
i 

Since equations (98 ) ,  (99) ,  and (100) result in a quadratic system 

of equations containing nine unknowns and nine equations, the solution, in 

general, results in two roots for each system of three equations, i. e. , for 

each plane. 

plane. 

the normal, nij, and any line in  the (PI, P z ,  P3) base plane drawn from the 

point directly opposite the base line of the jth tangent plane is performed 

with each of the roots of the above system. 

positive, or  i f  they a r e  of opposite sense, the largest  algebraic value 

will determine the proper root to choose. If both inner products a r e  

negative, the largest  absolute value determines the proper root. 

However, only one of these roots is a valid solution in each 

In order to determine the proper root to use, the inner product of 

If both inner products a re  



The tangents are defined by: 

If these are solved simultaneously in a linear system of equations, the 

space co-ordinates (XQ, y4, z4) may be determined. 

The solution for the space co-ordinates provides the basis for 

determining the characterist ic co-ordinates which enables the solution 

of the velocity equations. 

relationship which coupled with the following relationship (which may be 

found in any compressible flow text): 

Equation (68 )  was chosen for the velocity 

where M* is the dimensionless Mach number defined as  the ratio of the 

flow velocity to that of the critical velocity, can be used to solve the dynamic 

portion of the numerical integration. 

following manner, 

If equation (68) is set  up in  the 

where C1 Czj , C3j , and C4j are  defined as follows: j '  

Cl, = tan pj cos 5 + tan pj sin 5 sin pj C5 j 

Czj = tan p. J sin 6 sin 8 j - tan p. J cos 6 sin p j sin e j  C5 j 
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C4j = tan p. sin pj sin 6 (ejt - ej) c6j J 

- tan p. cos 6 s in  p. sin e, (+jt 1 

t Cljej t Czj+j - M*./C3j 

- +j) Cbj J J 

J 

and 

A linear system of equations results,  i. e . ,  a three by four matrix. The 

subscript j designates the plane, while (j, 4) designates the value along 

the bi- characterist ic through point 4. 

The preceding derivation represents the solution of a point 

The addition of a general surface for the away from all surfaces. 

flow to follow simplifies the problem. 

by a general quadric equation as follows. 

The surface may be described 

a 2  t by2 t cz2 t dxy t exz t fyz f gx t h y  t qz t s = 0 (106) 

After determination of the normal direction cosines of the three 

tangent planes, the solution of the solid boundary flow must be 



rest r ic ted to the boundaries, 

these planes 

Solving the line intersections of two of 

yields 

The solution of the line intersection of the two tangent planes with 

the surface equation yields the co-ordinates q 

direction cosines to the surface equation may then be obtained. 

y4, 2 4 .  The normal 

With this latter data, the following equation will apply since the 

velocity vector must be ifi the plane of the flow, (see Figure 7). 

Using this equation and equations (104), the velocity vector of the fourth 

point m a y  be calculated. 

preceding yields the proper solution. 

An iteration procedure similar to that of the 
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Figure 7 

Solution of Velocity Vector along Solid Boundary 
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Unsteady Flow in Two Dimensions 

The equations (94) and (95) can be prepared for finite difference 

solution by considering the following relations: 

and 

du au  au dt + -- 
da aa  a t  da  
- - -  - 

du - au  
dn an 
- - -  

dv av  av dt t -- 
da 8a  a t  da  
- - -  - 

CIV a v  - = -  
dn an 

dA aA 
dn an  
- = -  

dA - 8A - - -  
dt a t  
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From Figure 3:  

dt 
da 

t a n k  = - = * d  (a cos ti t u)' t (a sin €) t v ) ~  

Using equations ( 1 1 1 ) ,  (114) ,  (115) ,  ( 1 1 6 ) ,  and (120), equation (94)  becomes: 

- dv + 2 -[cos€)(-+ dA - E t a n A )  t sin ti(g)] = 0 
dn y - 1  da a t  du - a u  tan A) - (a + at 

dv + - - t a n 1  av t  sin 6 ( -  dA t - - t a n k  aA 
dn 

du - t -  
dn da a t  Y - 1  da a t  

The vorticity relationships are: 
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Using these with equation (121) yields: 

a t  dn dv t L [ c o s  y - 1  6(* da i = t a n  dt A) 

t s i n b g ]  dn = o 

and equation (122) is: 

- du t 1 -[sin6(- dA - t a n l -  dA + c o s b ~ ]  Tat a s  
an y - l  da dt - dn 

Equations (126) and (127) a r e  in a form suitable for solution by 

finite difference techniques. 

to a form similar to those in the steady flow analysis and solved by the 

velocity matrix, 

The relationships may be further expanded 

However, i t  may be more convenient to transform the velocity relationships 

to some other co-ordinate system (such as cylindrical or polar) to achieve 

unit velocity vectors. 

The geometrical solution is quite similar to that of the steady with 

one major exception which is ,  X must be used instead of p. 
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DISCUSSION 

The three independent variable method of characteristics has 

been converted to a digital computer solution of the flow field. 

general method was programmed for use on the IBM 7090 computer. 

Preliminary results establish the solution as being valid for all values 

of velocity vectors above a Mach of 1. 2. 

check-out program is underway to determine any possible singularities 

in the computer solution. 

The 

At this time, an intensive 

This report  must be considered as completing development 

of the theory and the preliminary results of the check out. 

the intensive check-out phase has been completed, the computer 

solution and results will be presented. 

After 

Further development of the theory and numerical solution will 

be presented at a later date. 

discontinuities, mixing phenomena, jet  wakes, and exhaust plumes. 

This will include the treatment of 
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CONCLUSIONS 

The three -independent variable method of characteristics may 

be utilized to solve problems of steady and unsteady flow regimes. 

technique of finite differences may be utilized to effectively solve the 

potential equation in the characteristic surface. 

The 

The applications of this method may be extended to solve problems 

related to asymmetric flow fields, unsteady flow fields, and mixed flow 

fields for either inside flow or  outside flow conditions. Thus, it may be 

possible to determine the flow characteristics of nozzles, wakes, re-entry 

bodies, and many other types of problems encountered in the field of 

gas dynamics. 
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APPENDIX A 
PROOF OF THE THEOREM BY BJERKNES 

Beginning with equation 3 1 which states that 

we may transform the values of the curl  of TVS by the following 

d s  
d r  

VXT-  = V X T V S  

The x-direction yields 

The y-direction gives 

The z-direction becomes 

By inspection, the equations become 

V X T ~  = V x T v s  = V T x V s  

A- 1 

. A-2 
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A- 3 

A - 4  

A-5 



and V.  Bjerknes' theorem follows: 'I 

__ 

A- 6 

54 



APPENDIX B 

Equation 78 states 

Using equation 77 and substituting into 78 yields: 

Along streamlines 

Assuming ideal 

d P  
P 

therefor e, 

which is equation 82 in 

fluid and using Bernoulli's relation yields 

= o  aA aA 2A t 
v- t W E )  y-l (?tu- ax  aY 

three dimensions and four independent variables. 
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